当题目考察不定方程组,且一般情况下,求解(x+y+z)之和时考虑特值法。不定方程组拥有无数组解,而(x+y+z)的结果是唯一的,那么我们便可以随便找一组解代入即可。同时要使计算相对简单,便可以将系数较为复杂的未知数设为特值0,简化运算。
【例题】某班级需要采购 6个订书机、3个笔记本、4个文件袋共需260元;买4个订书机、1个笔记本、2个文件袋共需180元,则购买订书机、笔记本、文件袋各4个所需费用是:
A.220 B.180 C.160 D.120
【展鸿解析】C。根据题干信息,可以设购买订书机、笔记本、文件袋各1个所需费用为x元、y元、z元。则得到的两个方程分别为:6x+3y+4z=260①,4x+y+2z=180②,所求为4(x+y+z)。便可以利用特值法求解。令x=0,得出3y+4z=260,y+2z=180,求得y=-100,z=140,则4(x+y+z)=4×(0-100+140)=160元。故答案选择C。
展鸿教育专家提醒您:掌握了求解不定方程的四种方法,快速准确的求解此类题型便是小菜一碟。大量练习可以增强对知识点的理解和掌握。祝大家在考试中,过五关斩六将,取得好成绩!
注:本站稿件未经许可不得转载,转载请保留出处及源文件地址
相关推荐